Learning more about what makes golf cars go - Golf Course Industry

2021-12-30 21:38:31 By : Ms. Jane Tao

Let’s explore ways to understand and maximize the vehicles responsible for moving golfers around the course. What is deep-cycle battery cycle life? And how do charging methods affect battery life?

A common topic of discussion among golf car owners and fleet managers is understanding how to predict the actual cycle life of the deep-cycle batteries in their vehicles. When a battery is discharged and then recharged, that is considered one cycle. The number of cycles, or times the battery can be discharged and recharged, is called its cycle life. The cycle life of a deep-cycle battery (measured in cycles) is different from its calendar life (measured in months or years).

The point for discussion is understanding why some batteries have a longer cycle life than others. 

The expected cycle life of deep cycle batteries is determined by many factors. Battery designs and quality of materials and construction vary among different battery manufacturers and these determine in large part the overall expected cycle life of deep cycle batteries. In addition, variables in the application have a significant effect on overall cycle life. Factors such as charging method, frequency of maintenance (watering interval, terminal cleaning and tightening, etc.) and environmental conditions have a significant effect. But the single biggest factor affecting actual cycle life is Depth of Discharge (DOD). The percent of DOD is measured by dividing the number of amp-hours discharged from the battery on average by the rated capacity of the battery (usually the 20-hour capacity) as a percentage.

Most deep-cycle battery manufacturers offer an Expected Cycle Life vs. Depth of Discharge chart that shows the expected cycle life of batteries when discharged repeatedly to various depths of discharge. It is important to understand that the cycle life scale on these charts is usually plotted on a logarithmic scale. This is because a small change in the percent of DOD, but it makes a large change in cycle life. For example, if the cycle life of a battery is 500 cycles at 100-percent DOD, one would expect the cycle life at 50 percent DOD to double to 1,000 cycles. In reality, it increases by 2.3 times to 1150 cycles. This emphasizes the importance of managing the DOD of deep-cycle batteries. 

In addition to properly sizing the batteries for the application to manage DOD, it can also be managed through the use of opportunity charging or charging the batteries at every opportunity. This means that instead of waiting until the batteries are completely discharged before recharging them, they should be recharged after every discharge (however small the discharge is). This not only minimizes the percentage of DOD to maximize cycle life but also maximizes the battery’s state of charge for optimum runtime each time the vehicle is used. 

Most modern chargers utilize automatic charge controls that prevent excessive overcharge when recharging batteries after a shallow discharge. The Expected Cycle Life vs. Depth of Discharge chart can be used to compare the expected cycle life of batteries from various manufacturers in different applications. Most battery manufacturers recommend sizing the batteries for an application at 50 percent DOD. This optimizes the initial purchase cost of the batteries vs. the expected cycle life of the batteries at the designed DOD. This is often referred to as the Cycle Life Cost of the batteries and can be measured as the total cost per amp-hour of throughput during the life of the batteries.

An example of this principle is in the design of golf cars. Golf car designers have a wide range of choices in battery voltages and amp-hour capacities, but they must also take into account the size and weight of the battery pack and the overall cost of the vehicle system. Golf car battery pack voltages have increased from 24 volts to 36 volts to 48 volts and higher to increase power for acceleration and hill climbing. At the same time, battery pack amp-hour capacity has decreased from over 200 Ah for 6-volt batteries to 175 Ah or less for 8-volt batteries to 150 Ah or less for 12-volt batteries as system efficiencies have increased and regenerative braking has increased.

The total watt-hour energy content of the system has decreased from almost 10,000 watt-hours for a 48-volt system with 6-volt batteries to 8,000 watt-hours for a 48-volt system with 8-volt batteries to 7,000 watt-hours for a 48-volt system with 12-volt batteries while still maintaining the capability to do 36 holes without a recharge. However, even with regenerative braking, the average percent DOD has increased resulting in a decrease in expected cycle life. Improvements in battery design have offset this effect to some degree.

As mentioned previously, factors such as charging method, frequency of maintenance (watering interval, terminal cleaning and tightening, etc.) and environmental conditions, have a significant effect on actual cycle life as well. Using an automatic charger with the proper charge profile and/or selectable charge algorithm for the batteries being used is critical to achieving the expected battery life in the application. It is important to check that the charger is the right one for the type of battery (flooded deep cycle, sealed AGM or GEL), amp-hour capacity of the battery and manufacturer of the battery. 

Even within battery types, there are differences in battery design between manufacturers of batteries that may require different charge profiles and/or charge algorithms. Check with the manufacturer of the battery to determine the proper charger and charge algorithm. This is particularly important when purchasing new batteries for an existing application. Using the wrong charger or charge algorithm can significantly shorten the life of your batteries. The charge algorithm should include the capability for either automatic or manual equalization charging. This is important for balancing the state of charge of cells in a pack and to provide enough gassing to mix the electrolyte to prevent stratification.  Equalization charging should be performed at least once a month.

Similarly, not performing the proper type and frequency of maintenance can reduce the life expectancy of your batteries. This includes watering the batteries regularly with distilled or properly purified water, cleaning and tightening terminals and hardware regularly, and observing environmental conditions that could affect battery life. Temperature is particularly important because operation at extremely high or low temperatures directly affects battery performance and life. Storage temperature is important because it affects self-discharge rate. Maintaining a healthy state of charge during storage is important to prevent sulfation and potential freezing at low state of charge.

Fred Wehmeyer is the senior vice president of engineering at U.S. Battery Manufacturing.

Deal makes Target Specialty Product exclusive distributor of multiple technology solutions.

Target Specialty Products will become the exclusive distributor for several Leading Edge technology solutions. The strategic alliance allows both organizations to expand offerings across several industries and better serve customers. 

For more than a decade, Leading Edge has grown by following its mission of bringing technology and science together. Their flagship technology solutions include MapVision (geospatial data management system), PrecisionVision (unmanned aircraft systems and software), and DropVision (droplet analysis software). Leading Edge aims to make organizations more efficient, effective and safe and is currently supporting operations in vector, pest, agriculture, weed, forestry, and aquatic management from coast to coast.

Target Specialty Products brings extensive experience and expertise in vector control and aerial applications, along with an energetic team that will help deliver successful solutions to customers. Target Specialty Products will support Leading Edge as its exclusive distributor of Leading Edge’s PrecisionVision, DropVision and FleetVision technologies.

“Leading Edge provides some of the most advanced technologies in our industry and we are excited to be the exclusive distributor for their products,” Target Specialty Products President Dave Helt said. “These technologies will allow Target Specialty Products’ extensive sales network to offer unique integrated management solutions and application methods to our customers.”

The growing interest in Leading Edge products had CEO Bill Reynolds looking for a solution to continue expanding without sacrificing time dedicated to current clients, developing new technology innovations or improving current industry leading technologies.

The partnership with Target Specialty Products is a great fit for our growing business,” Reynolds said. “Leading Edge will remain focused on enhancing our technologies and supporting operations where our products are active. The scale of the Target Specialty Products’ team ensures our products continue to be shared with organizations throughout North America.”

Stowers joins company as project manager and turfgrass specialist.

Michael McCarthy named director of administrative sales, Michael Wallace to lead marketing efforts.

New year, new possibilities for establishing and installing an internal safety plan.

While writing a safety plan can easily be pushed to the bottom of a golf course superintendent’s long to-do list, it’s arguably the most critical item on that list. A safety plan goes beyond protecting your employees; it protects the superintendent and the club itself from liability, negative publicity and fines. No matter how experienced, confident and knowledgeable your crew may be, they need to follow a defined and comprehensive safety plan.

The Occupational Safety and Health Administration (OSHA) loves to call this an “injury and illness prevention program, but most normal people call it a “safety plan.” Your facility’s safety plan is required to have a written safety policy on anything that you reasonably feel could injure an employee or cause illness. 

This is a very long list and should include safety policies on turf equipment, tractors, mowers, chainsaws, smoking rules and regulations, first aid, respirator use, bloodborne pathogens, chemical hazard communication, the globally harmonized system, contingency planning (emergency coordinators, contacts, spill control and reporting requirements), safety rules for vehicles/carts, fire safety, lightning safety, trenching and shoring, heat stress, cold stress, personal protective equipment (with individual sections for each type of PPE), electrical lock out tag out (including qualified personnel and procedures), and much more. As we said, it’s a very long list.

OSHA requires that you communicate all of these polices to your employees. You should consider collecting these policies into a handbook, distributing them to each staff member and then holding a meeting with them to cover and discuss all of the policies.

The final step is to have the staff sign off on them. If you have Spanish-speaking employees, we recommend you provide them with one written in Spanish. Again, OSHA only requires you to communicate this information to the staff but there’s no better documentation than giving them a copy and having them sign off on it.

Part of your written safety program should be chemical Safety Data Sheets, or SDSs, for all hazardous materials on site. While there are online and other electronic solutions for SDSs, you can’t beat an old-fashioned SDS notebook placed in the shop or the lunchroom. Regulations require that there are no “barriers to access” for SDSs. Many electronic SDS solutions would require that every crew member have unfettered access to your office computers throughout the day. That’s not too likely at most facilities.

For every topic discussed with written safety policies, you are required to conduct safety training on the same subjects. How many topics? If you search the OSHA website for the term “safety training,” you get over 20,000 search results. If you’re not at least having monthly safety training sessions, you should be rethinking your program.

There are safety training video services available online that can make easy and short work of this responsibility.

If you want to develop a safety training program in house, you should consider selected one topic per month, then writing an outline, creating a quiz based on your outline, covering the material with and then quizzing each employee, then reviewing the answers until each employee understands the answers and receives a perfect score. 

If you were wondering why you needed to print quizzes, this is why: OSHA has a three-pronged requirement for safety training and safety plans. You need to prove:

Because “if it wasn’t documented, it didn’t happen.”

Todd Miller is a turf geek who never stops talking about safety and the president of Golf Safety. Before establishing Golf Safety and developing safety plans and training programs for golf facilities and country clubs across the country, he was a 15-year golf course superintendent.